fbchat
Release 2.0.0a4

Taehoon Kim; Moreels Pieter-dan; Mads Marquart

Jun 07, 2020

CONTENTS

1 Version Warning 3
2 Caveats 5
3 Installation 7
4 Documentation Overview 9
4.1 Introduction L e e e e e e e e e 9
4.2 Examples e 13
4.3 Frequently Asked QUESHiONs e e e e 18
4.4 Full APL . . . e e e e e e e 19
Python Module Index 51
Index 53

fbchat, Release 2.0.0a4

A powerful and efficient library to interact with Facebook’s Messenger, using just your email and password.

This is not an official API, Facebook has that over here for chat bots. This library differs by using a normal Facebook
account instead.

fbchat currently support:

Sending many types of messages, with files, stickers, mentions, etc.

Fetching all messages, threads and images in threads.

Searching for messages and threads.

Creating groups, setting the group emoji, changing nicknames, creating polls, etc.
Listening for, an reacting to messages and other events in real-time.

Type hints, and it has a modern codebase (e.g. only Python 3.5 and upwards).
async/await (COMING).

Essentially, everything you need to make an amazing Facebook bot!

CONTENTS 1

https://pypi.python.org/pypi/fbchat
https://pypi.python.org/pypi/fbchat
https://github.com/carpedm20/fbchat/tree/master/LICENSE
https://fbchat.readthedocs.io
https://travis-ci.org/carpedm20/fbchat
https://github.com/ambv/black
https://www.facebook.com/messages/
https://developers.facebook.com/docs/messenger-platform

fbchat, Release 2.0.0a4

2 CONTENTS

CHAPTER
ONE

VERSION WARNING

v2 is currently being developed at the master branch and it’s highly unstable. If you want to view the old v1, go
here.

Additionally, you can view the project’s progress here.

https://github.com/carpedm20/fbchat/tree/v1
https://github.com/carpedm20/fbchat/projects/2

fbchat, Release 2.0.0a4

4 Chapter 1. Version Warning

CHAPTER
TWO

CAVEATS

fbchat works by imitating what the browser does, and thereby tricking Facebook into thinking it’s accessing the
website normally.

However, there’s a catch! Using this library may not comply with Facebook’s Terms Of Service!, so be responsible
Facebook citizens! We are not responsible if your account gets banned!

Additionally, the APIs the library is calling is undocumented! In theory, this means that your code could break
tomorrow, without the slightest warning! If this happens to you, please report it, so that we can fix it as soon as
possible!

With that said, let’s get started!

fbchat, Release 2.0.0a4

6 Chapter 2. Caveats

CHAPTER
THREE

INSTALLATION

’$ pip install fbchat

If you don’t have pip, this guide can guide you through the process.

You can also install directly from source, provided you have pip>=19.0:

’$ pip install git+https://github.com/carpedm20/fbchat.git

https://pip.pypa.io/
http://docs.python-guide.org/en/latest/starting/installation/

fbchat, Release 2.0.0a4

8 Chapter 3. Installation

CHAPTER
FOUR

DOCUMENTATION OVERVIEW

4.1 Introduction

Welcome, this page will guide you through the basic concepts of using fbchat.

The hardest, and most error prone part is logging in, and managing your login session, so that is what we will look at
first.

4.1.1 Logging In

Everything in fbchat starts with getting an instance of Session. Currently there are two ways of doing that,
Session.loginand Session.from cookies.

The follow example will prompt you for you password, and use it to login:

import getpass
import fbchat

session = fbchat.Session.login("<email/phone number>", getpass.getpass())
If your account requires a two factor authentication code:
session = fbchat.Session.login/(

"<your email/phone number>",
getpass.getpass (),
lambda: getpass.getpass ("2FA code"),

However, this is not something you should do often! Logging in/out all the time will get your Facebook account
locked!

Instead, you should start by using Session.login, and then store the cookies with Session.get_cookies,
so that they can be used instead the next time your application starts.

Usability-wise, this is also better, since you won’t have to re-type your password every time you want to login.

The following, quite lengthy, yet very import example, illustrates a way to do this:

TODO: Consider adding Session.from file and Session.to_file,
which would make this example a lot easier!

import atexit
import json
import getpass
import fbchat

(continues on next page)

fbchat, Release 2.0.0a4

(continued from previous page)

def load_cookies (filename) :
try:
Load cookies from file
with open(filename) as f:
return json.load(f)
except FileNotFoundError:
return # No cookies yet

def save_cookies (filename, cookies):
with open(filename, "w") as f:
json.dump (cookies, £f)

def load_session(cookies):
if not cookies:
return
try:
return fbchat.Session.from_cookies (cookies)
except fbchat.FacebookError:
return # Failed loading from cookies

cookies = load_cookies("session.json")
session = load_session (cookies)
if not session:
Session could not be loaded, login instead!
session = fbchat.Session.login("<email>", getpass.getpass/())

Save session cookies to file when the program exits
atexit.register (lambda: save_cookies ("session.json", session.get_cookies()))

Do stuff with session here

Assuming you have successfully completed the above, congratulations! Using fbchat should be mostly trouble free
from now on!

4.1.2 Understanding Thread Ids

At the core of any thread is its unique identifier, its ID.

A thread basically just means “something I can chat with”, but more precisely, it can refer to a few things: - A Mes-
senger group thread (Group) - The conversation between you and a single Facebook user (User) - The conversation
between you and a Facebook Page (Page)

You can get your own user ID from Session.user with session.user.id.

Getting the ID of a specific group thread is fairly trivial, you only need to login to https://www.messenger.com/, click
on the group you want to find the ID of, and then read the id from the address bar. The URL will look something like
this: https://www.messenger.com/t/1234567890, where 1234567890 would be the ID of the group.

The same method can be applied to some user accounts, though if they have set a custom URL, then you will have to
use a different method.

An image to illustrate the process is shown below:

10 Chapter 4. Documentation Overview

https://www.messenger.com/

fbchat, Release 2.0.0a4

Q Messenger X +

/1234567890

_ - e p— 4

c https://www.messenger.co

Once you have an ID, you can use it to create a Group or a User instance, which will allow you to do all sorts of
things. To do this, you need a valid, logged in session:

group = fbchat.Group (session=session, id="<The id you found>")
Or for user threads
user = fbchat.User (session=session, id="<The id you found>")

Just like threads, every message, poll, plan, attachment, action etc. you send or do on Facebook has a unique ID.

Below is an example of using such a message ID to get a Message instance:

Provide the thread the message was created in, and it's ID
message = fbchat.Message (thread=user, i1d="<The message id>")

4.1.3 Fetching Information

Managing these ids yourself quickly becomes very cumbersome! Luckily, there are other, easier ways of getting
Groupl/User instances.

You would start by creating a C11ient instance, which is basically just a helper on top of Session, that will allow
you to do various things:

client = fbchat.Client (session=session)

Now, you could search for threads using C1ient.search_for_threads, or fetch a list of them using C1ient.
fetch_threads:

Fetch the 5 most likely search results

Uses Facebook's search functions, you don't have to specify the whole name, first,_
—names will usually be enough

threads = list (client.search_for_threads ("<name of the thread to search for>", |
—1limit=5))

Fetch the 5 most recent threads in your account

threads = list(client.fetch_threads (limit=5))

Note the 11 st statements; this is because the methods actually return generators. If you don’t know what that means,
don’t worry, it is just something you can use to make your code faster later.

The examples above will actually fetch UserDatal/GroupData, which are subclasses of User/Group. These
model have extra properties, so you could for example print the names and ids of the fetched threads like this:

for thread in threads:
print (£" {thread.id/: {thread.name/")

Once you have a thread, you can use that to fetch the messages therein:

for message in thread.fetch_messages (limit=20) :
print (message.text)

4.1. Introduction 11

https://docs.python.org/3/library/stdtypes.html#list
https://wiki.python.org/moin/Generators

fbchat, Release 2.0.0a4

4.1.4 Interacting with Threads
Once you have a User/Group instance, you can do things on them as described in ThreadABC, since they are
subclasses of that.

Some functionality, like adding users to a Group, or blocking a User, logically only works the relevant threads, so
see the full API documentation for that.

With that out of the way, let’s see some examples!

The simplest way of interacting with a thread is by sending a message:

Send a message to the user
message = user.send_text ("test message")

There are many types of messages you can send, see the full API documentation for more.

Notice how we held on to the sent message? The return type i a Message instance, so you can interact with it
afterwards:

React to the message with the emoji
message.react ("")

Besides sending messages, you can also interact with threads in other ways. An example is to change the thread color:

Will change the thread color to the default blue
thread.set_color ("#0084ff")

4.1.5 Listening & Events

Now, we are finally at the point we have all been waiting for: Creating an automatic Facebook bot!

To get started, you create the functions you want to call on certain events:

def my_function (event: fbchat.MessageEvent) :
print (f"Message from {event.author.id/: {event.message.text ")

Then you create a fbchat . Listener object:

listener = fbchat.Listener (session=session, chat_on=False, foreground=False)

Which you can then use to receive events, and send them to your functions:

for event in listener.listen():
if isinstance (event, fbchat.MessageEvent) :
my_function (event)

View the Examples to see some more examples illustrating the event system.

12 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

4.2 Examples

These are a few examples on how to use fbchat. Remember to swap out <email> and <password> for your

email and password

4.2.1 Basic example

This will show basic usage of fbchat

import fbchat

Log the user in
session = fbchat.Session.login("<email>", "<password>")

print ("Own id: {/}".format (session.user.id))

Send a message to yourself
session.user.send_text ("Hi me!")

Log the user out
session.logout ()

4.2.2 Interacting with Threads

This will interact with the thread in every way fbchat supports

import fbchat
import requests

session = fbchat.Session.login("<email>", "<password>")
client = fbchat.Client (session)

thread = session.user

thread = fbchat.User (session=session, 1d="0987654321")

thread = fbchat.Group (session=session, 1id="1234567890")

Will send a message to the thread
thread.send_text ("<message>")

Will send the default ‘like’ emoji
thread.send_sticker (fbchat.EmojiSize.LARGE.value)

Will send the emoji
thread.send_emoji("", size=fbchat.EmojiSize.LARGE)

Will send the sticker with ID '767334476626295"
thread.send_sticker ("767334476626295")

Will send a message with a mention
thread.send_text (
text="This is a @mention",

mentions=[fbchat.Mention (thread.id, offset=10, length=8)],

(continues on next page)

4.2. Examples

13

fbchat, Release 2.0.0a4

(continued from previous page)

Will send the image located at ‘<image path>"
with open("<image path>", "rb") as f:

files = client.upload ([("image_name.png", £, "image/png")])
thread.send_text (text="This is a local image", files=files)

Will download the image at the URL ‘<image url>", and then send it

r = requests.get ("<image url>")
files = client.upload ([("image_name.png", r.content, "image/png")])
thread.send_files (files) # Alternative to .send_ text

Only do these actions 1f the thread is a group
if isinstance(thread, fbchat.Group):
Will remove the user with ID “<user 1id>" from the group
thread.remove_participant ("<user id>")
Will add the users with IDs '<lst user id>', '<2nd user 1id>' and '<3th user 1id>
- to the group
thread.add_participants(["<lst user id>", "<2nd user id>", "<3rd user id>"])
Will change the title of the group to “<title>"
thread.set_title("<title>")

Will change the nickname of the user ‘<user 1d>" to '<new nickname>"
thread.set_nickname (fbchat.User (session=session, id="<user id>"), "<new nickname>")

Will set the typing status of the thread
thread.start_typing()

Will change the thread color to #0084ff
thread.set_color ("#0084ff™)

Will change the thread emoji to
thread.set_emoji("")

message = fbchat.Message (thread=thread, id="<message id>")

Will react to a message with a emoji
message.react ("")

4.2.3 Fetching Information

This will show the different ways of fetching information about users and threads

import fbchat
session = fbchat.Session.login("<email>", "<password>")
client = fbchat.Client (session=session)

Fetches a list of all users you're currently chatting with, as ‘User objects
users = client.fetch_all_users/()

print ("users' IDs: {}".format ([user.id for user in users]))
print ("users' names: {}".format ([user.name for user in users]))

(continues on next page)

14 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

(continued from previous page)

If we have a user id, we can use fetch_user_info' to fetch a 'User object

user = client.fetch_user_info ("<user id>") ["<user id>"]
We can also query both mutiple users together, which returns list of ‘User' objects
users = client.fetch_user_info("<lst user id>", "<2nd user id>", "<3rd user id>")

print ("user's name: {}".format (user.name))
print ("users' names: {}".format ([users[k].name for k in users]))

‘search_for_users' searches for the user and gives us a list of the results,
and then we just take the first one, aka. the most likely one:

user = client.search_for_users("<name of user>") [0]

print ("user ID: {}".format (user.id))

print ("user's name: {}".format (user.name))

print ("user's photo: {}".format (user.photo))

print ("Is user client's friend: {}".format (user.is_friend))

Fetches a list of the 20 top threads you're currently chatting with
threads = client.fetch_thread_list ()

Fetches the next 10 threads

threads += client.fetch_thread_list (offset=20, 1limit=10)

print ("Threads: {/".format (threads))

If we have a thread id, we can use “fetch_thread info' to fetch a "Thread' object
thread = client.fetch_thread_info ("<thread id>") ["<thread id>"]
print ("thread's name: {}".format (thread.name))

Gets the last 10 messages sent to the thread

messages = thread.fetch_messages (limit=10)

Since the message come 1in reversed order, reverse them
messages.reverse ()

Prints the content of all the messages
for message in messages:
print (message.text)

'search_for_threads’' searches works like ‘search_for_users , but gives us a list of,
—threads instead

thread = client.search_for_threads ("<name of thread>") [0]

print ("thread's name: {)".format (thread.name))

Here should be an example of ‘getUnread’

Print image url for up to 20 last images from thread.
images = list (thread.fetch_images (limit=20))
for image in images:

if isinstance (image, fbchat.ImageAttachment) :

(continues on next page)

4.2. Examples 15

fbchat, Release 2.0.0a4

(continued from previous page)

url = client.fetch_image_url (image.id)
print (url)

4.2.4 Echobot

This will reply to any message with the same message

import fbchat

session = fbchat.Session.login("<email>", "<password>")
listener = fbchat.Listener (session=session, chat_on=False, foreground=False)

for event in listener.listen():
if isinstance (event, fbchat.MessageEvent):
print (f" {event .message.text/ from {event.author.id) in [{event.thread.id}")
If you're not the author, echo
if event.author.id != session.user.id:
event.thread.send_text (event .message.text)

4.2.5 Remove Bot

This will remove a user from a group if they write the message Remove me!

import fbchat

def on_message (event) :
We can only kick people from group chats, so no need to try if it's a user chat
if not isinstance (event.thread, fbchat.Group):
return
if event.message.text == "Remove me!":
print (f" {event.author.id/ will be removed from {event.thread.id/")
event.thread.remove_participant (event.author.id)

session = fbchat.Session.login("<email>", "<password>")
listener = fbchat.Listener (session=session, chat_on=False, foreground=False)
for event in listener.listen():
if isinstance (event, fbchat.MessageEvent) :
on_message (event)

4.2.6 “Prevent changes”-Bot

This will prevent chat color, emoji, nicknames and chat name from being changed. It will also prevent people from
being added and removed

This example uses the “blinker’ library to dispatch events. See echobot.py for how
this could be done differenly. The decision is entirely up to you!

import fbchat

import blinker

(continues on next page)

16 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

(continued from previous page)

Change this to your group id
old_thread_id = "1234567890"

Change these to match your liking

old_color = "#0084ff"

old_emoji = ""

old_title = "0Old group chat name"

old_nicknames = {
"12345678901": "User nr. 1's nickname",
"12345678902": "User nr. 2's nickname",
"12345678903": "User nr. 3's nickname",
"12345678904": "User nr. 4's nickname",

Create a blinker signal
events = blinker.Signal ()

Register various event handlers on the signal
@events.connect_via (fbchat.ColorSet)
def on_color_set (sender, event: fbchat.ColorSet):

if old_thread_id != event.thread.id:
return
if old_color != event.color:

print (f" {event.author.id} changed the thread color. It will be changed back")
event .thread.set_color (old_color)

@events.connect_via (fbchat.EmojiSet)
def on_emoji_set (sender, event: fbchat.EmojiSet) :

if old_thread_id != event.thread.id:
return
if old_emoji != event.emoji:

print (f" {event.author.id} changed the thread emoji. It will be changed back")
event.thread.set_emoji (old_emoji)

@events.connect_via (fbchat.TitleSet)
def on_title_set (sender, event: fbchat.TitleSet):

if old_thread_id != event.thread.id:
return
if old_title != event.title:

print (f" {event.author.id} changed the thread title. It will be changed back")
event .thread.set_title(old_title)

@events.connect_via (fbchat.NicknameSet)
def on_nickname_set (sender, event: fbchat.NicknameSet) :

if old_thread_id != event.thread.id:

return
old_nickname = old_nicknames.get (event.subject.id)
if old_nickname != event.nickname:

print (

f" {event.author.id/ changed {event.subject.id/'s' nickname."
" It will be changed back"
)

event .thread.set_nickname (event.subject.id, old_nickname)

(continues on next page)

4.2. Examples 17

fbchat, Release 2.0.0a4

(continued from previous page)

@events.connect_via (fbchat.PeopleAdded)
def on_people_added(sender, event: fbchat.PeopleAdded):

if old_thread id != event.thread.id:
return
if event.author.id != session.user.id:
print (£f"{', '.Jjoin(x.id for x in event.added)) got added. They will be removed

N ")
for added in event.added:
event .thread.remove_participant (added.id)

@events.connect_via (fbchat.PersonRemoved)
def on_person_removed (sender, event: fbchat.PersonRemoved) :

if old_thread_id != event.thread.id:
return

No point in trying to add ourself

if event.removed.id == session.user.id:
return

if event.author.id != session.user.id:

print (f" {event.removed.id/ got removed. They will be re-added")
event .thread.add_participants ([event.removed.id])

Login, and start listening for events
session = fbchat.Session.login("<email>", "<password>")
listener = fbchat.Listener (session=session, chat_on=False, foreground=False)

for event in listener.listen():
Dispatch the event to the subscribed handlers
events.send(type (event), event=event)

4.3 Frequently Asked Questions

4.3.1 The new version broke my application

fbchat follows Scemantic Versioning quite rigorously!
That means that breaking changes can only occur in major versions (e.g. v1.9.6 ->v2.0.0).

If you find that something breaks, and you didn’t update to a new major version, then it is a bug, and we would be
grateful if you reported it!

In case you’re stuck with an old codebase, you can downgrade to a previous version of fbchat, e.g. version 1. 9. 6:

$ pip install fbchat==1.9.6

18 Chapter 4. Documentation Overview

https://semver.org/

fbchat, Release 2.0.0a4

4.3.2 Will you be supporting creating posts/events/pages and so on?

We won’t be focusing on anything else than chat-related things. This library is called foCHAT, after all!

4.4 Full API

If you are looking for information on a specific function, class, or method, this part of the documentation is for you.

4.4.1 Session

class fbchat.Session (¥ user_id, fb_dtsg, revision, session=NOTHING, counter=0,

client_id=NOTHING)
Stores and manages state required for most Facebook requests.

This is the main class, which is used to login to Facebook.

property user
The logged in user.

classmethod login (email, password, on_2fa_callback=None)
Login the user, using email and password.

Parameters
e email (str)-—Facebook email, id or phone number
* password (st r)— Facebook account password

e on_2fa_callback (Optional[Callable[[], int]]) — Function that will be called,
in case a two factor authentication code is needed. This should return the requested code.

Tested using SMS and authentication applications. If you have both enabled, you might
not receive an SMS code, and you’ll have to use the authentication application.

Note: Facebook limits the amount of codes they will give you, so if you don’t receive a
code, be patient, and try again later!

Example

>>> import fbchat

>>> import getpass

>>> session = fbchat.Session.login/(
input ("Email: "),
getpass.getpass (),
on_2fa_callback=lambda: input ("2FA Code: ™)

)

Email: abc@gmail.com

Password: *xx#x%

2FA Code: 123456

>>> session.user.id

"1234"

is_logged_in ()
Send a request to Facebook to check the login status.

Return type bool

4.4.

Full API

19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

fbchat, Release 2.0.0a4

Returns Whether the user is still logged in

Example

>>> assert session.is_logged_in()

logout ()
Safely log out the user.

The session object must not be used after this action has been performed!

Example

>>> gession.logout ()

Return type None

get_cookies ()
Retrieve session cookies, that can later be used in from cookies.

Return type Mapping[str, str]

Returns A dictionary containing session cookies

Example

>>> cookies = session.get_cookies()

classmethod from_cookies (cookies)
Load a session from session cookies.

Parameters cookies (Mapping[str, str])— A dictionary containing session cookies

Example

>>> cookies = session.get_cookies|()

>>> # Store cookies somewhere, and then subsequently
>>> session = fbchat.Session.from cookies (cookies)

4.4.2 Client

class fbchat .Client (* session)
A client for Facebook Messenger.

This contains methods that are generally needed to interact with Facebook.

20 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

Create a new client instance.

>>> client = fbchat.Client (session=session)

session
The session to use when making requests.

fetch _users ()
Fetch users the client is currently chatting with.

This is very close to your friend list, with the follow differences:

It differs by including users that you’re not friends with, but have chatted with before, and by including
accounts that are “Messenger Only”.

But does not include deactivated, deleted or memorialized users (logically, since you can’t chat with those).
The order these are returned is arbitrary.

Example

Get the name of an arbitrary user that you’re currently chatting with.

>>> users = client.fetch_users/()
>>> users[0] .name
"A user"

Return type Sequence[UserDatal
search_for_users (name, limit)
Find and get users by their name.
The returned users are ordered by relevance.
Parameters
* name (st r)— Name of the user

e limit (int) - The max. amount of users to fetch

Example

Get the full name of the first found user.

>>> (user,) = client.search_for_users("user", limit=1)
>>> user.name
"A user"

Return type Iterable[UserDatal
search_for_pages (name, limit)
Find and get pages by their name.
The returned pages are ordered by relevance.

Parameters

4.4. Full API 21

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable

fbchat, Release 2.0.0a4

* name (str)— Name of the page

e limit (int) - The max. amount of pages to fetch

Example

Get the full name of the first found page.

>>> (page,) = client.search_for_pages("page", limit=1)
>>> page.name
HA page"

Return type Iterable[PageData]
search_for_groups (name, limit)
Find and get group threads by their name.
The returned groups are ordered by relevance.
Parameters
* name (str)— Name of the group thread

e limit (int)— The max. amount of groups to fetch

Example

Get the full name of the first found group.

>>> (group,) = client.search_for_groups ("group", limit=1)
>>> group.name
"A groupll

Return type Tterable[GroupDatal]
search_for_threads (name, limit)
Find and get threads by their name.
The returned threads are ordered by relevance.
Parameters
* name (str)— Name of the thread

e 1limit (int) - The max. amount of threads to fetch

Example

Search for a user, and get the full name of the first found result.

>>> (user,) = client.search_for_threads ("user", limit=1)
>>> assert isinstance (user, fbchat.User)

>>> user.name

"A user"

Return type Tterable[ThreadABC]

22 Chapter 4. Documentation Overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable

fbchat, Release 2.0.0a4

search_messages (query, limit)
Search for messages in all threads.

Intended to be used alongside ThreadABC. search _messages.

Warning! If someone send a message to a thread that matches the query, while we’re searching, some
snippets will get returned twice, and some will be lost.

This is fundamentally not fixable, it’s just how the endpoint is implemented.
Parameters
e query (str) - Text to search for

e limit (Optional[int]) — Max. number of items to retrieve. If None, all will be
retrieved

Example

Search for messages, and print the amount of snippets in each thread.

>>> for thread, count in client.search_messages ("abc", limit=3):
print (f" {thread.id} matched the search {count) time(s)")

1234 matched the search 2 time (s)
2345 matched the search 1 time (s)
3456 matched the search 100 time (s)

Return type Tterable[Tuple[ThreadABC, int]]

Returns Iterable with tuples of threads, and the total amount of matches.

fetch_thread info (ids)
Fetch threads’ info from IDs, unordered.

Warning: Sends two requests if users or pages are present, to fetch all available info!

Parameters ids (Iterable[str])— Thread ids to query

Example

Get data about the user with id “4”.

>>> (user,) = client.fetch_thread_info(["4"])
>>> user.name
"Mark Zuckerberg"

Return type Iterable[ThreadABC]
fetch_threads (limit, location=<ThreadLocation.INBOX: 'INBOX'>)
Fetch the client’s thread list.
The returned threads are ordered by last active first.

Parameters

4.4.

Full API 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable

fbchat, Release 2.0.0a4

e 1limit (Optional[int]) — Max. number of threads to retrieve. If None, all threads
will be retrieved.

* location (ThreadLocation)—INBOX, PENDING, ARCHIVED or OTHER

Example

Fetch the last three threads that the user chatted with.

>>> for thread in client.fetch_threads (limit=3):
print (f" {thread.id/: thread.name /")

1234: A user
2345: A group
3456: A page

Return type Tterable[ThreadABC]

fetch_unread ()
Fetch unread threads.

Warning: This is not finished, and the API may change at any point!

Return type Sequence[ThreadABC]

fetch _unseen ()
Fetch unseen / new threads.

Warning: This is not finished, and the API may change at any point!

Return type Sequence[ThreadABC]

fetch_image_url (image_id)
Fetch URL to download the original image from an image attachment ID.

Parameters image_id (str)— The image you want to fetch

Example

>>> client.fetch_image_url ("1234")
"https://scontent-arnl-1.xx.fbcdn.net/v/t1.123-4/1_23_45_n.png?..."

Return type str
Returns An URL where you can download the original image
get_phone_numbers ()
Fetch the user’s phone numbers.

Return type Sequence[str]

24 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

get_emails ()
Fetch the user’s emails.

Return type Sequence[str]

upload (files, voice_clip=False)
Upload files to Facebook.

Distribution files should be alist of files that requests can upload, see requests.request.

Example
>>> with open("file.txt", "rb") as f:
(file,) = client.upload([("file.txt", £, "text/plain")])
>>> file
("1234", "text/plain")

Return type Sequence[Tuple[str, str]]
Returns Tuples with a file’s ID and mimetype. This result can be passed straight on to

ThreadABC.send_files,orusedin Group.set_image.

mark_as_delivered (message)
Mark a message as delivered.

Warning: This is not finished, and the API may change at any point!

Parameters message (Message) — The message to set as delivered
mark_ as_ read (threads, at)
Mark threads as read.
All messages inside the specified threads will be marked as read.
Parameters
e threads (Iterable[ThreadABC]) — Threads to set as read
* at (datetime)— Timestamp to signal the read cursor at

mark_as_unread (threads, at)
Mark threads as unread.

All messages inside the specified threads will be marked as unread.
Parameters
e threads (Iterable[ThreadABC]) — Threads to set as unread
* at (datetime)— Timestamp to signal the read cursor at

move_threads (location, threads)
Move threads to specified location.

Parameters
* location (ThreadLocation)—-INBOX, PENDING, ARCHIVED or OTHER

e threads (Iterable[ThreadABC]) — Threads to move

4.4.

Full API 25

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.metadata.html#files
https://docs.python-requests.org/en/master/api/#requests.request
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Iterable

fbchat, Release 2.0.0a4

delete_ threads (threads)
Bulk delete threads.

Parameters threads (Iterable[ThreadABC]) — Threads to delete

Example

>>> group = fbchat.Group(session=session, id="1234")
>>> client.delete_threads ([group])

delete_messages (messages)
Bulk delete specified messages.

Parameters messages (Iterable[Message]) — Messages to delete

Example

>>> messagel = fbchat.Message (thread=thread, id="1234")
>>> message2 = fbchat.Message (thread=thread, id="2345")
>>> client.delete_threads ([messagel, message2])

4.4.3 Threads

class fbchat.ThreadABC
Implemented by thread-like classes.

This is private to implement.

abstract property session
The session to use when making requests.

Return type Session

abstract property id
The unique identifier of the thread.

Return type str

wave (first=True)
Wave hello to the thread.

Parameters first (bool)— Whether to wave first or wave back

Example

Wave back to the thread.

>>> thread.wave (False)

Return type str

send_text (text, mentions=None, files=None, reply_to_id=None)
Send a message to the thread.

Parameters

26 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

¢ text (str) - Textto send
* mentions (Optional[Iterable[Mention]])— Optional mentions

e files (Optional[Ilterable[Tuple[str, str]]]) — Optional tuples, each contain-
ing an uploaded file’s ID and mimetype. See ThreadABC. send_files for an exam-
ple.

e reply to_id (Optional[str])— Optional message to reply to

Example

>>> mention = fbchat.Mention (thread_id="1234", offset=5, length=2)
>>> thread.send_text ("A message", mentions=[mention])

Return type str
Returns The sent message
send_emoji (emoji, size)
Send an emoji to the thread.
Parameters
* emoji (str)— The emoji to send

* size (EmojiSize) — The size of the emoji

Example

>>> thread.send_emoji("", size=fbchat.EmojiSize.LARGE)

Return type str

Returns The sent message

send_sticker (sticker_id)
Send a sticker to the thread.

Parameters sticker id (str) - ID of the sticker to send

Example

Send a sticker with the id “1889713947839631”

>>> thread.send_sticker ("1889713947839631")

Return type str
Returns The sent message
send_1location (latitude, longitude)
Send a given location to a thread as the user’s current location.

Parameters

4.4.

Full API

27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

¢ latitude (f1loat) - The location latitude

* longitude (float) — The location longitude

Example

Send a location in London, United Kingdom.

>>> thread.send_location(51.5287718, —-0.2416815)

send_pinned_location (latitude, longitude)

Send a given location to a thread as a pinned location.
Parameters
¢ latitude (float) - The location latitude

* longitude (float)— The location longitude

Example

Send a pinned location in Beijing, China.

>>> thread.send_pinned_location(39.9390731, 116.117273)

send_files (files)

Send files from file IDs to a thread.

Distribution files should be a list of tuples, with a file’s ID and mimetype.

Example

Upload and send a video to a thread.

>>> with open("video.mp4", "rb") as f:

files = client.upload ([("video.mpd", £, "video/mpd")])
>>>
>>> thread.send_files (files)

search_messages (query, limit)

Find and get message IDs by query.

Warning! If someone send a message to the thread that matches the query, while we’re searching, some
snippets will get returned twice.

This is fundamentally not fixable, it’s just how the endpoint is implemented.
The returned message snippets are ordered by last sent first.
Parameters
¢ query (str) - Text to search for

* limit (int)— Max. number of message snippets to retrieve

Chapter 4. Documentation Overview

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/importlib.metadata.html#files
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

fbchat, Release 2.0.0a4

Example

Fetch the latest message in the thread that matches the query.

>>> (message,) = thread.search_messages ("abc", limit=1)
>>> message.text
"Some text and abc"

Return type Iterable[MessageSnippet]
fetch_messages (limit)
Fetch messages in a thread.
The returned messages are ordered by last sent first.

Parameters 1imit (Optional[int]) — Max. number of threads to retrieve. If None, all
threads will be retrieved.

Example

>>> for message in thread.fetch_messages (limit=5)
print (message.text)

A message
Another message
None

A fourth message

Return type Iterable[Message]
fetch_images (limit)
Fetch images/videos posted in the thread.
The returned images are ordered by last sent first.

Parameters 1limit (Optional[int]) — Max. number of images to retrieve. If None, all
images will be retrieved.

Example

>>> for image in thread.fetch_messages (limit=3)
print (image.id)

1234

2345

Return type Iterable[Attachment]
set_nickname (user_id, nickname)
Change the nickname of a user in the thread.
Parameters

e user_id (str) - User that will have their nickname changed

4.4.

Full API 29

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

¢ nickname (str)— New nickname

Example

>>> thread.set_nickname ("1234", "A nickname™)

set_color (color)
Change thread color.

The new color must be one of the following:

"#0084ff", "#44becT", "#ffc300", "#fal3cdc", "#d696bb", "#6699cc",
"#13cf13", "#££7e29", "#e68585", "#7646ff", "#20cefb", "#67b868",
"#d4a88c", "#ffb5cal", "#a695c7", "#ff7ca8", "#ladbSb", "#f0ldea",
"$#ff9cl9" or "#0edcde".

This list is subject to change in the future!
The default when creating a new thread is "#0084ff".
Parameters color (str)— New thread color

Example

Set the thread color to “Coral Pink™.

>>> thread.set_color ("#e68585")

set_emo3ji (emoji)
Change thread emoji.

Parameters emoji (Optional[str])— New thread emoji. If None, will be set to the default
“LIKE” icon

Example

132

Set the thread emoji to

>>> thread.set_emoji("")

forward_attachment (attachment_id)
Forward an attachment.

Parameters attachment_id (str)— Attachment ID to forward

Example

>>> thread.forward_attachment ("1234")

start_typing()
Set the current user to start typing in the thread.

30 Chapter 4. Documentation Overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

>>> thread.start_typing()

stop_typing ()
Set the current user to stop typing in the thread.

Example

>>> thread.stop_typing ()

create_plan (name, at, location_name=None, location_id=None)
Create a new plan.

TODO: Arguments
Parameters
* name (str)— Name of the new plan

* at (datetime)— When the plan is for

Example

>>> thread.create_plan(...)

create_poll (question, options)
Create poll in a thread.

Parameters
* question (str) - The question

* options (Mapping[str, bool])— Options and whether you want to select the option

Example

>>> thread.create_poll ("Test poll", {"Option 1": True, "Option 2": False})

mute (duration=None)
Mute the thread.

Parameters duration (Optional[timedelta])— Time to mute, use None to mute for-
ever

4.4. Full API 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/datetime.html#datetime.timedelta

fbchat, Release 2.0.0a4

Example

>>> import datetime
>>> thread.mute (datetime.timedelta (days=2))

unmute ()
Unmute the thread.

Example

>>> thread.unmute ()

mute_reactions ()
Mute thread reactions.

unmute_reactions ()
Unmute thread reactions.

mute_mentions ()
Mute thread mentions.

unmute_mentions ()
Unmute thread mentions.

mark_as_spam ()
Mark the thread as spam, and delete it.

delete ()
Delete the thread.

If you want to delete multiple threads, please use Client.delete_ threads.

Example

>>> message.delete ()

class fbchat.Thread (* session, id)
Represents a Facebook thread, where the actual type is unknown.

Implements parts of ThreadABC, call the method to figure out if your use case is supported. Otherwise, you’ll
have to use an User/Group/Page object.

Note: This list may change in minor versions!

session

The session to use when making requests.
id

The unique identifier of the thread.

class fbchat .Page (% session, id)
Represents a Facebook page. Implements ThreadABC.

32 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

Example

>>> page = fbchat.Page(session=session, 1d="1234")

session
The session to use when making requests.

id
The unique identifier of the page.

class fbchat .User (¥ session, id)
Represents a Facebook user. Implements ThreadABC.

Example

>>> user = fbchat.User (session=session, id="1234")

session
The session to use when making requests.

id
The user’s unique identifier.

confirm friend_request ()
Confirm a friend request, adding the user to your friend list.

Example

>>> user.confirm friend_request ()

remove_friend ()
Remove the user from the client’s friend list.

Example

>>> user.remove_friend()

block ()
Block messages from the user.

Example

>>> user.block ()

unblock ()
Unblock a previously blocked user.

4.4. Full API

33

fbchat, Release 2.0.0a4

Example

>>> user.unblock ()

class fbchat.Group (*, session, id)
Represents a Facebook group. Implements ThreadABC.

Example

>>> group = fbchat.Group(session=session, id="1234")

session
The session to use when making requests.

id
The group’s unique identifier.

add_participants (user_ids)
Add users to the group.

Parameters user ids (Iterable[str]) - One or more user IDs to add

Example

>>> group.add_participants (["1234", "2345"])

remove_participant (user_id)
Remove user from the group.

Parameters user_id (str) - User ID to remove

Example

>>> group.remove_participant ("1234")

add_admins (user_ids)
Set specified users as group admins.

Parameters user_ids (Iterable[str]) - One or more user IDs to set admin

Example

>>> group.add_admins (["1234", "2345"7])

remove_admins (user_ids)
Remove admin status from specified users.

Parameters user_ids (Iterable[str]) - One or more user IDs to remove admin

34 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

>>> group.remove_admins (["1234", "2345"7])

set_title (title)
Change title of the group.

Parameters title (str)— New title

Example

>>> group.set_title ("Abc")

set_image (image_id)
Change the group image from an image id.

Parameters image_id (str)—ID of uploaded image

Example

Upload an image, and use it as the group image.

>>> with open ("image.png", "rb") as f:
(file,) = client.upload([("image.png", £, "image/png")])

>>> group.set_image (file[0])

set_approval_mode (require_admin_approval)
Change the group’s approval mode.

Parameters require_admin_approval (bool)— True or False

Example

>>> group.set_approval_mode (False)

accept_users (user_ids)
Accept users to the group from the group’s approval.

Parameters user_ids (Iterable[str])— One or more user IDs to accept

Example

>>> group.accept_users (["1234", "2345"])

deny_users (user_ids)
Deny users from joining the group.

Parameters user_ids (Iterable[str])— One or more user IDs to deny

4.4. Full API 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

>>> group.deny_users (["1234", "2345"7])

4.4.4 Thread Data

class fbchat.PageData (*, session, id, photo, name, last_active=None, message_count=None,
plan=None, url=None, city=None, likes=None, sub_title=None, cate-
gory=None)
Represents data about a Facebook page.
Inherits Page, and implements ThreadABC.

photo
The page’s picture

name
The name of the page

last_active
When the thread was last active / when the last message was sent

message_count
Number of messages in the thread

plan
Set Plan

url
The page’s custom URL
city
The name of the page’s location city

likes
Amount of likes the page has

sub_title
Some extra information about the page

category
The page’s category

class fbchat.UserData (¥, session, id, photo, name, is_friend, first_name, last_name=None,
last_active=None, message_count=None, plan=None, url=None, gen-
der=None, affinity=None, nickname=None, own_nickname=None,
color=None, emoji=None)
Represents data about a Facebook user.

Inherits User, and implements ThreadABC.

photo
The user’s picture

name
The name of the user

is_ friend
Whether the user and the client are friends

36 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

first name
The users first name

last_name
The users last name

last_active
When the thread was last active / when the last message was sent

message_count
Number of messages in the thread

plan
Set Plan

url
The profile URL. None for Messenger-only users

gender
The user’s gender

affinity
From 0O to 1. How close the client is to the user

nickname
The user’s nickname

own_nickname
The clients nickname, as seen by the user

color
The message color

emoji
The default emoji
class fbchat.GroupData (*, session, id, photo=None, name=None, last_active=None, mes-
sage_count=None, plan=None, participants=NOTHING, nick-

names=NOTHING, color=None, emoji=None, admins=NOTHING, ap-

proval_mode=None, approval_requests=NOTHING, join_link=None)
Represents data about a Facebook group.

Inherits Group, and implements ThreadABC.

photo
The group’s picture

name
The name of the group

last_active
When the group was last active / when the last message was sent

message_count
Number of messages in the group

plan
Set Plan

participants
The group thread’s participant user ids

nicknames
A dictionary, containing user nicknames mapped to their IDs

4.4. Full API 37

fbchat, Release 2.0.0a4

color
The groups’s message color

emoji
The groups’s default emoji

4.4.5 Messages

class fbchat .Message (¥ thread, id)
Represents a Facebook message.

Example

>>> thread = fbchat.User (session=session, 1d="1234")
>>> message = fbchat.Message (thread=thread, id="mid.S$XYZ")

thread
The thread that this message belongs to.

id
The message ID.

property session
The session to use when making requests.

delete ()
Delete the message (removes it only for the user).

If you want to delete multiple messages, please use Client.delete_messages.

Example

>>> message.delete ()

unsend ()
Unsend the message (removes it for everyone).

The message must to be sent by you, and less than 10 minutes ago.

Example

>>> message.unsend ()

react (reaction)
React to the message, or removes reaction.

(132 I T LT S I T L R TS LI 122

Currently, you can use “7, «7, «7, <7« <« < or “”_Tt should be possible to add support for more, but we
haven’t figured that out yet.

Parameters reaction (Optional[str])— Reaction emoji to use, or if None, removes re-
action.

38 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

>>> message.react ("")

fetch ()
Fetch fresh MessageData object.

Example

>>> message = message.fetch()
>>> message.text
"The message text"

Return type MessageData

static format_mentions (text, *args, **kwargs)
Like st r. format, but takes tuples with a thread id and text instead.

Return a tuple, with the formatted string and relevant mentions.

—"4321", "Michael"))

—length=7), Mention (thread_id=4321, offset=24, length=7)])

>>> Message.format_mentions ("Hey ! My name is ", ("1234", "pPeter"),

("Hey 'Peter'! My name is Michael", [Mention(thread_id=1234, offset=4,

—"4321", "Peter"))
('"Hey Peter! My name is Michael', [Mention (thread_id=4321, offset=4, |
—length=5), Mention(thread_id=1234, offset=22, length=7)])

>>> Message.format_mentions ("Hey ! My name is ", ("1234", "Michael"),

p=(

class fbchat .Mention (¥ thread_id, offset, length)
Represents a @mention.

>>> fbchat.Mention (thread_id="1234", offset=5, length=2)
Mention (thread_id="1234", offset=5, length=2)

thread_id
The thread ID the mention is pointing at

offset
The character where the mention starts

length
The length of the mention

class fbchat.EmojiSize (Enum)
Used to specify the size of a sent emoji.

LARGE = '369239383222810"'
MEDIUM = '369239343222814"'
SMALL = '369239263222822"

4.4. Full API

39

https://docs.python.org/3/library/stdtypes.html#str.format

fbchat, Release 2.0.0a4

class fbchat .MessageData (*, thread, id, author, created_at, text=None, mentions=NOTHING,

emoji_size=None, is_read=None, read_by=NOTHING, re-
actions=NOTHING, sticker=None, attachments=NOTHING,
quick_replies=NOTHING, unsent=False, reply_to_id=None,

replied_to=None, forwarded=False)
Represents data in a Facebook message.

Inherits Message.

author
ID of the sender

created_at
When the message was sent

text
The actual message

mentions

A list of Ment ion objects
emoji_size

Size of a sent emoji

is read
Whether the message is read

read_by
People IDs who read the message, only works with ThreadABC. fetch_messages

reactions
A dictionary with user’s IDs as keys, and their reaction as values

sticker
A Sticker

attachments
A list of attachments

quick_replies
Alistof QuickReply

unsent
Whether the message is unsent (deleted for everyone)

reply to_id
Message ID you want to reply to

replied to
Replied message

forwarded
Whether the message was forwarded

40 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

4.4.6 Exceptions

exception fbchat .FacebookError (message)
Base class for all custom exceptions raised by fbchat.
All exceptions in the module inherit this.

message
A message describing the error

exception fbchat .HTTPError (message, status_code=None)
Base class for errors with the HTTP(s) connection to Facebook.

status_code
The returned HTTP status code, if relevant

exception fbchat .ParseError (message, data)
Raised when we fail parsing a response from Facebook.

This may contain sensitive data, so should not be logged to file.

data
The data that triggered the error.

The format of this cannot be relied on, it’s only for debugging purposes.

exception fbchat .NotLoggedIn (message)
Raised by Facebook if the client has been logged out.

exception fbchat .ExternalError (message, description, code=None)
Base class for errors that Facebook return.

description
The error message that Facebook returned (Possibly in the user’s own language)

code
The error code that Facebook returned

exception fbchat.GraphQLError (message, description, code=None, debug_info=None)
Raised by Facebook if there was an error in the GraphQL query.

debug_info
Query debug information

exception fbchat.InvalidParameters (message, description, code=None)
Raised by Facebook if:

* Some function supplied invalid parameters.
* Some content is not found.
* Some content is no longer available.

exception fbchat.PleaseRefresh (message, description, code=1357004)
Raised by Facebook if the client has been inactive for too long.

This error usually happens after 1-2 days of inactivity.

4.4. Full API 41

fbchat, Release 2.0.0a4

4.4.7 Attachments

class fbchat .Attachment (*, id=None)

Represents a Facebook attachment.
id
The attachment ID

class fbchat.ShareAttachment (¥, id=None, author=None, url=None, original_url=None, ti-

tle=None, description=None, source=None, image=None, origi-

nal_image_url=None, attachments=NOTHING)
Represents a shared item (e.g. URL) attachment.

author
ID of the author of the shared post

url
Target URL

original_url
Original URL if Facebook redirects the URL

title
Title of the attachment

description
Description of the attachment

source

Name of the source
image

The attached image

original_ image_url
URL of the original image if Facebook uses safe_image

attachments
List of additional attachments

class fbchat.Sticker (¥ id=None, pack=None, is_animated=False, medium_sprite_image=None,

large_sprite_image=None, frames_per_row=None, frames_per_col=None,
frame_count=None, frame_rate=None, image=None, label=None)
Represents a Facebook sticker that has been sent to a thread as an attachment.

pack
The sticker-pack’s ID

is _animated
Whether the sticker is animated

medium_sprite_image
URL to a medium spritemap

large_sprite_image
URL to a large spritemap

frames_per_row
The amount of frames present in the spritemap pr. row

frames_per_col
The amount of frames present in the spritemap pr. column

42

Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

frame_ count
The total amount of frames in the spritemap

frame_rate
The frame rate the spritemap is intended to be played in

image
The sticker’s image

label
The sticker’s label/name

class fbchat.LocationAttachment (* id=None, latitude=None, longitude=None, image=None,

url=None, address=None)
Represents a user location.

Latitude and longitude OR address is provided by Facebook.

latitude
Latitude of the location

longitude
Longitude of the location

image
Image showing the map of the location

url
URL to Bing maps with the location

class fbchat.LivelLocationAttachment (*, id=None, latitude=None, longitude=None, im-
age=None, url=None, address=None, name=None, ex-
pires_at=None, is_expired=None)

Represents a live user location.
name
Name of the location

expires_at
When live location expires

is_expired
True if live location is expired

class fbchat .FileAttachment (% id=None, url=None, size=None, name=None,
is_malicious=None)
Represents a file that has been sent as a Facebook attachment.
url
URL where you can download the file

size
Size of the file in bytes

name
Name of the file

is _malicious
Whether Facebook determines that this file may be harmful

class fbchat.AudioAttachment (*, id=None, filename=None, url=None, duration=None, au-

dio_type=None)
Represents an audio file that has been sent as a Facebook attachment.

4.4. Full API 43

fbchat, Release 2.0.0a4

filename
Name of the file

url
URL of the audio file

duration
Duration of the audio clip

audio_type
Audio type

class fbchat.ImageAttachment (* id=None, original_extension=None, width=None, height=None,
is_animated=None, previews=NOTHING)
Represents an image that has been sent as a Facebook attachment.

To retrieve the full image URL, use: Client.fetch image url,and pass it the id of the image attachment.

original_extension
The extension of the original image (e.g. png)

width
Width of original image

height
Height of original image

is_animated
Whether the image is animated

previews
A set, containing variously sized / various types of previews of the image

class fbchat.VideoAttachment (¥, id=None, size=None, width=None, height=None, dura-
tion=None, preview_url=None, previews=NOTHING)
Represents a video that has been sent as a Facebook attachment.

size
Size of the original video in bytes

width
Width of original video

height
Height of original video

duration
Length of video

preview_url
URL to very compressed preview video

previews
A set, containing variously sized previews of the video

class fbchat.ImageAttachment (* id=None, original_extension=None, width=None, height=None,

is_animated=None, previews=NOTHING)
Represents an image that has been sent as a Facebook attachment.

To retrieve the full image URL, use: Client.fetch image url,and pass it the id of the image attachment.

44 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

original_extension
The extension of the original image (e.g. png)

width
Width of original image

height
Height of original image

is_animated
Whether the image is animated

previews
A set, containing variously sized / various types of previews of the image

4.4.8 Events

class fbchat.Listener (¥, session, chat_on, foreground, mqtt=NOTHING, sync_token=None, se-

quence_id=None, tmp_events=NOTHING)
Listen to incoming Facebook events.

Initialize a connection to the Facebook MQTT service.
Parameters
* session (Session)— The session to use when making requests.
e chat_on (bool)— Whether ...

* foreground (bool)— Whether...

Example

>>> listener = fbchat.Listener (session, chat_on=True, foreground=True)

listen ()
Run the listening loop continually.

This is a blocking call, that will yield events as they arrive.

This will automatically reconnect on errors, except if the errors are one of PleaseRefresh or
NotLoggedIn.

Example

Print events continually.

>>> for event in listener.listen|():
print (event)

Return type Tterable[Event]

disconnect ()
Disconnect the MQTT listener.

Can be called while listening, which will stop the listening loop.

The Listener object should not be used after this is called!

4.4. Full API 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable

fbchat, Release 2.0.0a4

Example

Stop the listener when receiving a message with the text “/stop”

>>> for event in listener.listen():
if isinstance (event, fbchat.MessageEvent) :
— n

if event.message.text == "/stop":
listener.disconnect () # Almost the same "break"

Return type None
set_foreground (value)
Set the foreground value while listening.
Return type None

set_chat_on (value)
Set the chat_on value while listening.

Return type None

4.4.9 Miscellaneous
class fbchat.ThreadLocation (Enum)
Used to specify where a thread is located (inbox, pending, archived, other).
INBOX = 'INBOX'
PENDING = 'PENDING'
ARCHIVED = 'ARCHIVED'
OTHER = 'OTHER'

class fbchat.ActiveStatus (* active, last_active=None, in_game=None)

active
Whether the user is active now

last_active
When the user was last active

in_game
Whether the user is playing Messenger game now

class fbchat.QuickReply (%, payload=None, external_payload=None, data=None,
is_response=False)
Represents a quick reply.

payload
Payload of the quick reply

external_payload
External payload for responses

data
Additional data

is_response
Whether it’s a response for a quick reply

46 Chapter 4. Documentation Overview

fbchat, Release 2.0.0a4

class fbchat.QuickReplyText (*, payload=None, external_payload=None, data=None,
is_response=False, title=None, image_url=None)
Represents a text quick reply.

title
Title of the quick reply

image_url
URL of the quick reply image

class fbchat.QuickReplylLocation (¥, payload=None, external_payload=None, data=None,

is_response=~False)
Represents a location quick reply (Doesn’t work on mobile).

class fbchat.QuickReplyPhoneNumber (* payload=None, external_payload=None, data=None,

is_response=False, image_url=None)
Represents a phone number quick reply (Doesn’t work on mobile).

image_url
URL of the quick reply image

class fbchat.QuickReplyEmail (*, payload=None, external_payload=None, data=None,
is_response=False, image_url=None)
Represents an email quick reply (Doesn’t work on mobile).

image_url
URL of the quick reply image

class fbchat .Poll (* session, id, question, options, options_count)
Represents a poll.

session
ID of the poll

id
ID of the poll

question
The poll’s question

options
The poll’s top few options. The full list can be fetched with fetch_options

options_count
Options count

fetch_options ()
Fetch all Pol10ption objects on the poll.

The result is ordered with options with the most votes first.

Example

>>> options = poll.fetch_options/()
>>> options[0].text
"An option"

Return type Sequence[PollOption]

set_votes (option_ids, new_options=None)
Update the user’s poll vote.

4.4. Full API

47

https://docs.python.org/3/library/typing.html#typing.Sequence

fbchat, Release 2.0.0a4

Parameters
* option_ids (Iterable[str])— Option ids to vote for / keep voting for

* new_options (Optional[Iterable[str]]) — New options to add

Example

>>> options = poll.fetch_options/()
>>> # Add option

>>> poll.set_votes([o.id for o in options], new_options=["New option"])
>>> # Remove vote from option
>>> poll.set_votes([o.1id for o in options if o.text != "Option 1"])

class fbchat.PollOption (% id, text, vote, voters, votes_count)
Represents a poll option.

id
ID of the poll option

text
Text of the poll option

vote
Whether vote when creating or client voted

voters
ID of the users who voted for this poll option

votes_count
Votes count

class fbchat .Plan (¥ session, id)
Base model for plans.

Example

>>> plan = fbchat.Plan(session=session, id="1234")

session

The session to use when making requests.
id

The plan’s unique identifier.

fetch()
Fetch fresh P1anData object.

48 Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

fbchat, Release 2.0.0a4

Example

>>> plan = plan.fetch()
>>> plan.title
HA planﬂ

Return type PlanData
edit (name, at, location_name=None, location_id=None)
Edit the plan.
TODO: Arguments

delete ()
Delete the plan.

Example

>>> plan.delete()

participate ()
Set yourself as GOING/participating to the plan.

Example

>>> plan.participate ()

decline ()
Set yourself as having DECLINED the plan.

Example

>>> plan.decline ()

class fbchat .PlanData (*, session, id, time, title, location=None, location_id=None, author_id=None,
guests=None)
Represents data about a plan.
time
Plan time, only precise down to the minute

title
Plan title

location
Plan location name

location_id
Plan location ID

author id
ID of the plan creator

guests
User ids mapped to their GuestStatus

4.4. Full API 49

fbchat, Release 2.0.0a4

property going
List of the User IDs who will take part in the plan.

Return type Sequence[str]

property declined

List of the User IDs who won’t take part in the plan.

Return type Sequence[str]

property invited
List of the User IDs who are invited to the plan.

Return type Sequence[str]

class fbchat.GuestStatus (Enum)
An enumeration.

INVITED = 1
GOING = 2
DECLINED = 3

50

Chapter 4. Documentation Overview

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

PYTHON MODULE INDEX

f

fbchat, 19

51

fbchat, Release 2.0.0a4

52 Python Module Index

A

accept_users () (fbchat.Group method), 35
active (fbchat.ActiveStatus attribute), 46
ActiveStatus (class in fbchat), 46

add_admins () (fbchat.Group method), 34
add_participants () (fbchat.Group method), 34
affinity (fbchat.UserData attribute), 37
ARCHIVED (fbchat. ThreadLocation attribute), 46
Attachment (class in fbchat), 42

attachments (fbchat.MessageData attribute), 40
attachments (fbchat.ShareAttachment attribute), 42
audio_type (fbchat. AudioAttachment attribute), 44
AudioAttachment (class in fbchat), 43

author (fbchat.MessageData attribute), 40

author (fbchat.ShareAttachment attribute), 42
author_id (fbchat.PlanData attribute), 49

B

block () (fbchat.User method), 33

C

category (fbchat.PageData attribute), 36
city (fbchat.PageData attribute), 36
Client (class in fbchat), 20
code (fbchat.ExternalError attribute), 41
color (fbchat.GroupData attribute), 37
color (fbchat.UserData attribute), 37
confirm friend request ()
method), 33
create_plan () (fbchat.ThreadABC method), 31
create_poll () (fbchat.ThreadABC method), 31
created_at (fbchat.MessageData attribute), 40

D

data (fbchat.ParseError attribute), 41

data (fbchat.QuickReply attribute), 46
debug_info (fbchat.GraphQLETrror attribute), 41
decline () (fbchat.Plan method), 49

DECLINED (fbchat.GuestStatus attribute), 50
declined () (fbchat.PlanData property), 50
delete () (fbchat.Message method), 38

delete () (fbchat.Plan method), 49

(fbchat.User

INDEX

delete () (fbchat.ThreadABC method), 32
delete_messages () (fbchat.Client method), 26
delete_threads () (fbchat.Client method), 25
deny_users () (fbchat.Group method), 35
description (fbchat.ExternalError attribute), 41
description (fbchat.ShareAttachment attribute), 42
disconnect () (fbchat.Listener method), 45
duration (fbchat. AudioAttachment attribute), 44
duration (fbchat.VideoAttachment attribute), 44

E

edit () (fbchat.Plan method), 49

emo ji (fbchat.GroupData attribute), 38

emoji (fbchat.UserData attribute), 37

emoji_size (fbchat.MessageData attribute), 40

EmojiSize (class in fbchat), 39

expires_at (fbchat.LiveLocationAttachment
tribute), 43

external_payload (fbchat.QuickReply attribute), 46

ExternalError, 41

F

FacebookError, 41

fbchat (module), 19

fetch () (fbchat.Message method), 39

fetch () (fbchat.Plan method), 48
fetch_image_url () (fbchat.Client method), 24
fetch_images () (fbchat.ThreadABC method), 29
fetch_messages () (fbchat. ThreadABC method), 29
fetch_options () (fbchat.Poll method), 47
fetch_thread_info () (fbchat.Client method), 23
fetch_threads () (fbchat.Client method), 23
fetch_unread () (fbchat.Client method), 24
fetch_unseen () (fbchat.Client method), 24
fetch_users () (fbchat.Client method), 21
FileAttachment (class in fbchat), 43

filename (fbchat.AudioAttachment attribute), 43
first_name (fbchat.UserData attribute), 36

at-

format_mentions () (fbchat.Message static
method), 39

forward_attachment () (fbchat.ThreadABC
method), 30

53

fbchat, Release 2.0.0a4

forwarded (fbchat.MessageData attribute), 40
frame_count (fbchat.Sticker attribute), 42
frame_rate (fbchat.Sticker attribute), 43
frames_per_col (fbchat.Sticker attribute), 42
frames_per_row (fbchat.Sticker attribute), 42
from_cookies () (fbchat.Session class method), 20

G

gender (fbchat.UserData attribute), 37
get_cookies () (fbchat.Session method), 20
get_emails () (fbchat.Client method), 24
get_phone_numbers () (fbchat.Client method), 24
GOING (fbchat.GuestStatus attribute), 50
going () (fbchat.PlanData property), 49
GraphQLError, 41

Group (class in fbchat), 34

GroupData (class in fbchat), 37

guests (fbchat.PlanData attribute), 49
GuestStatus (class in fbchat), 50

H

height (fbchat.ImageAttachment attribute), 44, 45
height (fbchat.VideoAttachment attribute), 44
HTTPError, 41

id (fbchat.Attachment attribute), 42

id (fbchat.Group attribute), 34

id (fbchat.Message attribute), 38

id (fbchat.Page attribute), 33

id (fbchat.Plan attribute), 48

id (fbchat.Poll attribute), 47

id (fbchat.PollOption attribute), 48

id (fbchat. Thread attribute), 32

id (fbchat. User attribute), 33

id () (fbchat.ThreadABC property), 26

image (fbchat.LocationAttachment attribute), 43

image (fbchat.ShareAttachment attribute), 42

image (fbchat.Sticker attribute), 43

image_url (fbchat.QuickReplyEmail attribute), 47

image_url (fbchat.QuickReplyPhoneNumber
tribute), 47

image_url (fbchat.QuickReplyText attribute), 47

ImageAttachment (class in fbchat), 44

in_game (fbchat.ActiveStatus attribute), 46

INBOX (fbchat.ThreadLocation attribute), 46

InvalidParameters, 41

INVITED (fbchat.GuestStatus attribute), 50

invited() (fbchat.PlanData property), 50

is_animated (fbchat.ImageAttachment attribute), 44,
45

is_animated (fbchat.Sticker attribute), 42

is_expired (fbchat.LiveLocationAttachment
tribute), 43

at-

at-

is_friend (fbchat.UserData attribute), 36
is_logged_in () (fbchat.Session method), 19
is_malicious (fbchat.FileAttachment attribute), 43
is_read (fbchat.MessageData attribute), 40
is_response (fbchat.QuickReply attribute), 46

L

label (fbchat.Sticker attribute), 43

LARGE (fbchat.EmojiSize attribute), 39
large_sprite_image (fbchat.Sticker attribute), 42
last_active (fbchat.ActiveStatus attribute), 46
last_active (fbchat.GroupData attribute), 37
last_active (fbchat.PageData attribute), 36
last_active (fbchat.UserData attribute), 37
last_name (fbchat.UserData attribute), 37
latitude (fbchat.LocationAttachment attribute), 43
length (fbchat.Mention attribute), 39

likes (fbchat.PageData attribute), 36

listen () (fbchat.Listener method), 45

Listener (class in fbchat), 45
LiveLocationAttachment (class in fbchat), 43
location (fbchat.PlanData attribute), 49
location_id (fbchat.PlanData attribute), 49
LocationAttachment (class in fbchat), 43

login () (fbchat.Session class method), 19

logout () (fbchat.Session method), 20

longitude (fbchat.LocationAttachment attribute), 43

M

mark_as_delivered() (fbchat.Client method), 25
mark_as_read () (fbchat.Client method), 25
mark_as_spam() (fbchat.ThreadABC method), 32
mark_as_unread () (fbchat.Client method), 25
MEDIUM (fbchat. EmojiSize attribute), 39
medium_sprite_image (fbchat.Sticker attribute), 42
Mention (class in fbchat), 39

mentions (fbchat.MessageData attribute), 40
Message (class in fbchat), 38

message (fbchat. FacebookError attribute), 41
message_count (fbchat.GroupData attribute), 37
message_count (fbchat.PageData attribute), 36
message_count (fbchat.UserData attribute), 37
MessageData (class in fbchat), 39

move_threads () (fbchat.Client method), 25

mute () (fbchat.ThreadABC method), 31
mute_mentions () (fbchat.ThreadABC method), 32
mute_reactions () (fbchat. ThreadABC method), 32

N

name (fbchat.FileAttachment attribute), 43

name (fbchat.GroupData attribute), 37

name (fbchat.LiveLocationAttachment attribute), 43
name (fbchat.PageData attribute), 36

name (fbchat.UserData attribute), 36

54

Index

fbchat, Release 2.0.0a4

nickname (fbchat.UserData attribute), 37
nicknames (fbchat.GroupData attribute), 37
NotLoggedIn, 41

O

of fset (fbchat.Mention attribute), 39

options (fbchat.Poll attribute), 47

options_count (fbchat.Poll attribute), 47

original_extension (fbchat.ImageAttachment at-
tribute), 44

original_image_url (fbchat.ShareAttachment at-
tribute), 42

original_url (fbchat.ShareAttachment attribute), 42

OTHER (fbchat.ThreadLocation attribute), 46

own_nickname (fbchat.UserData attribute), 37

P

pack (fbchat.Sticker attribute), 42

Page (class in fbchat), 32

PageData (class in fbchat), 36

ParseError, 41

participants (fbchat.GroupData attribute), 37
participate () (fbchat.Plan method), 49
payload (fbchat.QuickReply attribute), 46
PENDING (fbchat.ThreadLocation attribute), 46
photo (fbchat.GroupData attribute), 37

photo (fbchat.PageData attribute), 36

photo (fbchat.UserData attribute), 36

Plan (class in fbchat), 48

plan (fbchat.GroupData attribute), 37

plan (fbchat.PageData attribute), 36

plan (fbchat.UserData attribute), 37

PlanData (class in fbchat), 49
PleaseRefresh, 41

Poll (class in fbchat), 47

PollOption (class in fbchat), 48
preview_url (fbchat.VideoAttachment attribute), 44
previews (fbchat.ImageAttachment attribute), 44, 45
previews (fbchat.VideoAttachment attribute), 44

Q

question (fbchat.Poll attribute), 47
quick_replies (fbchat.MessageData attribute), 40
QuickReply (class in fbchat), 46
QuickReplyEmail (class in fbchat), 47
QuickReplyLocation (class in fbchat), 47
QuickReplyPhoneNumber (class in fbchat), 47
QuickReplyText (class in fbchat), 46

R

react () (fbchat.Message method), 38
reactions (fbchat.MessageData attribute), 40
read_by (fbchat.MessageData attribute), 40

remove_admins () (fbchat.Group method), 34
remove_friend () (fbchat.User method), 33
remove_participant () (fbchat.Group method), 34
replied_to (fbchat.MessageData attribute), 40
reply_to_id (fbchat.MessageData attribute), 40

S

search_for_groups () (fbchat.Client method), 22

search_for_pages () (fbchat.Client method), 21

search_for_threads () (fbchat.Client method), 22

search_for_users () (fbchat.Client method), 21

search_messages () (fbchat.Client method), 22

search_messages () (fbchat.ThreadABC method),
28

send_emoji () (fbchat.ThreadABC method), 27

send_files () (fbchat.ThreadABC method), 28

send_location () (fbchat.ThreadABC method), 27

send_pinned_location () (fbchat.ThreadABC
method), 28

send_sticker () (fbchat.ThreadABC method), 27

send_text () (fbchat.ThreadABC method), 26

Session (class in fbchat), 19

session (fbchat.Client attribute), 21

session (fbchat.Group attribute), 34

session (fbchat.Page attribute), 33

session (fbchat.Plan attribute), 48

session (fbchat.Poll attribute), 47

session (fbchat. Thread attribute), 32

session (fbchat.User attribute), 33

session () (fbchat.Message property), 38

session () (fbchat.ThreadABC property), 26

set_approval_mode () (fbchat.Group method), 35

set_chat_on () (fbchat.Listener method), 46

set_color () (fbchat.ThreadABC method), 30

set_emoji () (fbchat.ThreadABC method), 30

set_foreground () (fbchat.Listener method), 46

set_image () (fbchat.Group method), 35

set_nickname () (fbchat.ThreadABC method), 29

set_title () (fbchat.Group method), 35

set_votes () (fbchat.Poll method), 47

ShareAttachment (class in fbchat), 42

size (fbchat. FileAttachment attribute), 43

size (fbchat.VideoAttachment attribute), 44

SMALL (fbchat. EmojiSize attribute), 39

source (fbchat.ShareAttachment attribute), 42

start_typing () (fbchat.ThreadABC method), 30

status_code (fbchat. HTTPError attribute), 41

Sticker (class in fbchat), 42

sticker (fbchat.MessageData attribute), 40

stop_typing () (fbchat. ThreadABC method), 31

sub_title (fbchat.PageData attribute), 36

T

text (fbchat.MessageData attribute), 40

Index

55

fbchat, Release 2.0.0a4

text (fbchat.PollOption attribute), 48
Thread (class in fbchat), 32

thread (fbchat.Message attribute), 38
thread_id (fbchat.Mention attribute), 39
ThreadABC (class in fbchat), 26
ThreadLocation (class in fbchat), 46
time (fbchat.PlanData attribute), 49

title (fbchat.PlanData attribute), 49
title (fbchat.QuickReplylext attribute), 47
title (fbchat.ShareAttachment attribute), 42

U

unblock () (fbchat.User method), 33

unmute () (fbchat.ThreadABC method), 32

unmute_mentions () (fbchat.ThreadABC method),
32

unmute_reactions () (fbchat.ThreadABC method),
32

unsend () (fbchat.Message method), 38

unsent (fbchat.MessageData attribute), 40

upload () (fbchat.Client method), 25

url (fbchat.AudioAttachment attribute), 44

url (fbchat.FileAttachment attribute), 43

url (fbchat.LocationAttachment attribute), 43

url (fbchat.PageData attribute), 36

url (fbchat.ShareAttachment attribute), 42

url (fbchat.UserData attribute), 37

User (class in fbchat), 33

user () (fbchat.Session property), 19

UserData (class in fbchat), 36

\Y

VideoAttachment (class in fbchat), 44
vote (fbchat. PollOption attribute), 48

voters (fbchat.PollOption attribute), 48
votes_count (fbchat. PollOption attribute), 48

W

wave () (fbchat.ThreadABC method), 26
width (fbchat.ImageAttachment attribute), 44, 45
width (fbchat.VideoAttachment attribute), 44

56

Index

	Version Warning
	Caveats
	Installation
	Documentation Overview
	Introduction
	Examples
	Frequently Asked Questions
	Full API

	Python Module Index
	Index

